IMMUNOLOGICAL SAFETY ISSUES IN EARLY CLINICAL TRIALS: A translational approach

Jacques Descotes MD, PharmD, PhD
Professor Emeritus, Claude Bernard University
Fellow, US Academy of Toxicological Sciences
Eurotox Registered Toxicologist
Independent Consultant
Introduction

- Immunotoxicology ➔ "THE SCIENCE OF POISONS TO THE IMMUNE SYSTEM"
 - Quantitative changes = suppression or stimulation
 - Qualitative changes = hypersensitivity or autoimmunity

- Immunological changes VS. immunotoxic effects
 - Immunological changes often "toxicologically inconsequential"
 - Immunotoxic effects ➔ only those immunological changes capable or shown to trigger adverse clinical consequences

- Rather few implemented guidelines
 - Small molecules ➔ ICH S8 (2005)
 - Biologics ➔ ICH S6R1 (2011) - FDA and EMA guidances on the immunogenicity assessment of therapeutic proteins, or mAbs

- Dormant area for long, but clearly thriving today
 - Exponential development of biopharmaceuticals
 - Significant therapeutic progress of immuno-oncology products
 - And, therapeutic vaccines, innovative constructs (bispecific antibodies, antisense drugs, nanomedicines), cell/gene therapy
4 types of immunotoxic effects

- IMMUNOSUPPRESSION
- IMMUNOSTIMULATION
- HYPERSENSITIVITY
- AUTOIMUNITY

Markedly different clinical consequences (i.e. drug-induced adverse effects)

Focused preclinical strategy essential to predict and assess immunotoxic risk(s)
• 2 MAIN CLINICAL CONSEQUENCES
 o Infections/infectious complications
 o Virus-induced neoplasia

• INFECTIONS
 o Viral, bacterial, fungal, parasitic infections
 o Always more frequent +++ (➔ statistical evidence ?)
 o Also unremarkable clinically in quite a few instances
 o Often more severe, possibly life-threatening, or relapsing
 o If distinctively atypical ➔ IMMUNOTOXICITY WARNING

• VIRUS-INDUCED NEOPLASIA
 o Unlikely outcome during early clinical trials in contrast to Phase III trials (e.g. tacrolimus), and beyond
 o Primarily skin cancers (>30% of transplant patients), and B-lymphomas (with possible spontaneous recovery in case of cessation of the offending drug)
Current preclinical evaluation primarily aimed at detecting (unintended) immunosuppressive drugs (see ICH S8 guideline)

- **Standard toxicity studies**: identification of warning readouts including clinical signs (e.g. infections, even though SPF and barrier-protected animals often used); hematological changes (e.g. marked neutropenia), and histological examination of the main lymphoid organs (atrophy of the thymus and lymph nodes)

- **Weight of evidence review** encompassing all preclinical toxicity data, fully elucidated or putative mechanism of action, intended therapeutic indication(s), at-risk patients…

→ IMMUNOTOXICITY WARNING or NOT?

if YES → Additional immunotoxicity studies required
TRANSLATIONAL CONSIDERATIONS

- **Additional immunotoxicity studies**
 - *TDAR* (T-Dependent Antibody Response) assay: recommended first-line assay to assess immunocompetence globally in rodents as well as non-rodents (dogs, monkeys, minipigs)
 - *Lymphocyte subset immunotyping*, essentially as an attempt to better understand the mechanism of action, and related immunotoxic effects; or hopefully validate biomarkers of efficacy (including in man)
 - *NK cell activity*, a "historical" readout with limited, if any significant role in immunotoxicity assessment (alike NK cell numbers)
 - *Moreover*, assessment of cell-mediated immunity (DTH) and innate immunity (phagocytosis, macrophages), to cite but a few, in a long list of possible (often academic and ill-qualified) functional assays

IMMUNOSUPPRESSION ➤ TAKE-HOME MESSAGE

- Careful clinical (time course and symptoms) and microbiological description of every infection **absolutely essential**
- Detailed diagnosis criteria and monitoring of any infection to be included in clinical trial protocols **at any phase** (+++)
4 types of immunotoxic effects

- IMMUNOSUPPRESSION
- IMMUNOSTIMULATION
- HYPERSENSITIVITY
- AUTOIMMUNITY
IMMUNOSTIMULATION

- **4 MAIN CLINICAL CONSEQUENCES**
 - Cytokine release-mediated acute reactions
 - More frequent autoimmune diseases
 - More frequent reactions to unrelated allergens
 - Inhibition of CYP-450 biotransformation pathways

- **CYTOKINE RELEASE-MEDIATED REACTIONS**
 - Continuum from flu-like reaction to acute cytokine syndrome
 - *Flu-like reaction*: quite ordinary reaction (e.g. vaccine boosting injection in children) with moderate fever, malaise, myalgias, quick and often spontaneous recovery
 - *Acute cytokine syndrome*: severe reaction with marked hyperthermia (>40°C), cardiovascular and/or neurological disturbances; often dose- or treatment limiting; symptomatic therapeutic measures required
 - *Cytokine storm*: (inappropriate hype from N Eng J Med) term associated for long with avian flu and septic shock (hence markedly different from TGN1412 accident)
• **MORE FREQUENT AUTOIMMUNE DISEASES**
 o Closely similar to spontaneous autoimmune diseases, only more frequent (and globally not more severe)
 o Wide array of autoimmune diseases possibly described
 o No reliable diagnostic criteria ➔ only statistical evidence, or suspicion

• **MORE FREQUENT REACTIONS TO UNRELATED ALLERGENS**
 o To be unequivocally differentiated from "drug allergy"
 o More frequent and/or more severe attacks of pre-existing asthma, urticaria, eczema, hay fever…
 o Often ignored, but reported with "old immunomodulating agents" (e.g. levamisole) as well as new nanomedicines

• **INHIBITION OF CYP450 BIOTRANSFORMATION PATHWAYS**
 o Convincingly shown to exquisitely involve IL-6 mediated inhibition of CYP450-related gene expression
 o Risk of drug interactions still poorly evaluated in the clinical setting
TRANSLATIONAL CONSIDERATIONS

- Cytokine release-mediated reactions
 - *Limited value*, if any of in vivo animal studies (especially in monkeys)
 - CRA (*Cytokine Release Assay*) using human whole blood or PBMCs: recommended assay, although still poorly standardized, but results of an international interlaboratory study to be published next fall
 - Subjective answer "yes or no" ➜ no agreed clinically significant threshold
 - Essential cytokines to be measured include pro-inflammatory cytokines (IL-1β, TNF-α, IL-6…), but importantly also IL-2 and IFN-γ
 - Results contributory to hazard characterization ➜ typically used to decide whether the first human starting dose should be based on the MABEL (Minimal Anticipated Biological Effect Level) or NOAEL (No Observable Adverse Effect Level) approach

CYTOKINE RELEASE ➤ TAKE-HOME MESSAGE
- Only in vitro CRA results *worth of consideration* for risk prediction
- No proven efficacy of any premedication scheme (acetaminophen, corticosteroids and/or antihistamine drugs)
TRANSLATIONAL CONSIDERATIONS

- More frequent autoimmune diseases
 - No relevant animal model or in vitro assay to evaluate risk

- More frequent reactions to unrelated allergens
 - Mouse or rat models to identify potential for enhanced sensitization to reference allergens (e.g. ovalbumin) by the dermal or respiratory route
 → identification of hazard
 - Risk characterization still problematic

- Inhibition of CYP450 biotransformation pathways
 - Wealth of in vitro assays, experimental models and pharmacokinetics data (including in humans) to evaluate risk

 IMMUNOSTIMULATION ➤ TAKE-HOME MESSAGE

- The times they are a 'changing'
- Hazard identification and risk evaluation expected to evolve quickly
4 types of immunotoxic effects

• IMMUNOSUPPRESSION
• IMMUNOSTIMULATION
• HYPERSENSITIVITY
• AUTOIMMUNITY
• BACKGROUND

 o HYPERSENSITIVITY = term to be preferred to replace the misleading and worn-out concept of "allergy"

 o Gell and Coombs' classification (1963): largely obsolete and often misleading → should be abandoned

• TWO CONTRASTING SITUATIONS

 o IMMUNE-MEDIATED hypersensitivity reactions (formerly known as immuno-allergic reactions)

 o NON IMMUNE-MEDIATED hypersensitivity reactions (or pseudo-allergic reactions)

 o No reliable detailed epidemiological data available

 o Hypersensitivity reactions commonly estimated to account for up to 10% of all drug-induced ADRs

 o Incidence of immune-mediated and non immune-mediated hypersensitivity reactions often thought to be comparable (namely ≈50%)
• IMMUNE-MEDIATED HYPERSENSITIVITY

- Pivotal role of both immunological recognition and memory → previous sensitization contact required in the vast majority of cases
- If very first contact, 7-10 days of treatment prior to clinical reaction onset
 (extremely rarely, possible cross-sensitization, e.g. cetuximab, or direct interaction with distinctive HLA, e.g. abacavir)
- If subsequent contact (not necessarily second contact), **rechallenge inconsistently positive** and delay of onset dependent on administration route (typically IV [min.] < IM / SC < oral [hrs])
- Reactions involving drug-specific antibodies: IgE (anaphylaxis), IgM or IgG (primarily immune-mediated cytopenias), immune complexes (classical serum sickness, or rare vasculitides)
- Reactions involving T lymphocytes: cell-mediated immune reactions (contact hypersensitivity ≠ delayed-type hypersensitivity)
• **NON IMMUNE-MEDIATED HYPERSENSITIVITY**

 o No involvement of any antigen-specific mechanism ➔ instead, release of some mediators involved in some immune-mediated reactions, but via a strictly pharmaco-toxicological process

 o Main differences
 - Adverse clinical reactions recorded even immediately after first contact
 - Clearly dose- or concentration-dependent ➔ more frequent above a threshold
 - Undebated role of administration route (IV), injection speed (bolus vs. infusion), few pharmaceutical solvents (e.g. Cremophor EL° and Tween 80)
 - Mitigation risk measures decisively applicable up to marketing authorization

 o Main mechanisms
 - Direct (i.e. non antigen-specific) histamine release ➔ flush, redness of skin, cough or shortness of breath, abdominal pain, malaise (e.g. vancomycin-induced red man syndrome)
 - Direct complement activation ➔ ≈ same as above, plus more severe respiratory disorders and inconsistent cardiovascular changes (hypotension, tachycardia)
 - **NSAIDs intolerance** ➔ asthma involving pharmacological disturbances of prostaglandins/leukotrienes biotransformation
 - **ICE-induced angioedema** ➔ directly linked to pharmacological mechanism = inhibition of converting enzyme leads to blockade of bradyklinin degradation
 - **Cytokine release** (?) Most often non-antigen specific mechanism
TRANSLATIONAL CONSIDERATIONS

- **Immune-mediated hypersensitivity**
 - Qualified animal models/in vitro assays available only to evaluate risk linked to some delayed-type hypersensitivity (e.g. contact dermatitis)
 - No relevance of animal immunogenicity studies → too many false negative (small molecules) or false positive results (biopharmaceuticals)

- **Non immune-mediated hypersensitivity**
 - More and more qualified animal models/in vitro assays to investigate mechanisms, to evaluate risk of non immune-mediated reactions, and to design animal studies intended to mitigate risk (e.g. role of speed or route of injection)

HYPERSENSITIVITY ➔ TAKE-HOME MESSAGE

- Careful description and time course of clinical symptoms absolutely crucial → erroneous diagnosis far too frequent
- Risk of drug-induced immune-mediated hypersensitivity reactions unpredictable in sharp contrast to non immune-mediated reactions
One "illustrative" situation: ACUTE INFUSION REACTIONS

- **Acute infusion reaction**: commonly used, although medically irrelevant term → clearly superficial, uninformative and misleading

- **Differential diagnosis**
 - **Anaphylactic reaction** → possible, but actually extremely uncommon during first infusion, as previous contact with suspected offending drug normally required (despite extremely rare exceptions to the rule)

 NB In sharp contrast to the published literature, including high impact medical journals

 - **Acute cytokine syndrome** → contribution of CRA results, but sequential cytokine measurements and correlation with clinical symptoms absolutely critical

 - **Direct histamine release** → decisive role of serial histamine blood levels and correlation with clinical symptoms

 - **Direct complement activation** → decisive role of complement activation blood levels (C3a, C5a, SC5b-9, Bb...), and needed correlation with clinical symptoms

ACUTE INFUSION REACTION ➤ TAKE-HOME MESSAGE
- Careful description and time course of clinical events crucial
- Several mechanisms possibly involved ➤ value of laboratory findings
4 types of immunotoxic effects

- **IMMUNOSUPPRESSION**
- **IMMUNOSTIMULATION**
- **HYPERSENSITIVITY**
- **AUTOIMMUNITY**

- Autoimmune reactions ≠ more frequent diseases (related to immunostimulation)
- Generally, one particular reaction characteristic of one given medicinal product
- Autoimmune reactions closely mimicking or not at all spontaneous disease counterparts
- Late onset usually ➔ rarely to be expected during early clinical trials
SHOULD YOU NEED CLARIFICATION, ADVICE, OR A PDF VERSION OF THIS PRESENTATION, YOU ARE KINDLY INVITED TO CONTACT ME AT: descotes@me.com