BE assessment of transdermal patches

Dr. Ulrich Becker, tesa Labtec GmbH | 16.05.2013
Topics

- Transdermal patches – the basics
- In vitro approach to BE by Franz cell permeation
- First in vivo studies – pilot BE study
- Proof of BE – pivotal BE study
- New aspects from the draft guideline
Transdermal patches – the basics

Composition of matrix patches

- **Back ing layer = outer surface**
- **Drug containing adhesive matrix**
- **Release liner = protective film**

Route of administration

- **Barrier: Stratum corneum**
Relevant guidelines

- Guideline CPMP/EWP/QWP/1401/98 Rev1/Corr
 - Investigation of bioequivalence

- Note for Guidance CPMP/EWP/280/96 Corr
 - Modified release oral and transdermal dosage forms: Section II

- Draft Guideline EMA/CHMP/EWP/280/96 Corr1
 - Pharmacokinetic and clinical evaluation of modified release dosage forms
 - Update to former guidelines

- Draft Guideline EMA//CHMP/QWP/911254/2011
 - Quality of transdermal patches
Franz cell experiments

- In vitro model
 - Prediction of permeation behavior
 - No in vitro – in vivo correlation!
- For generics: comparison with reference
- Skin samples or artificial membranes

- Obstacles
 - Cell creates occlusive conditions
 - Sink conditions required
 - Additives
 - Selection of membrane
 - EVA, mouse, pig, human

Acceptation compartment
Skin sample/membrane
Patch (test preparation)
Lid
Franz cell experiments

- Integrity of the skin/membrane – Guideline requests proof
- Min. n=6 samples when using skin
- n=4 sufficient with artificial membranes (own experience)
- Duration of experiment: 72 h (state of the art)

- Draft guideline „Quality of transdermal patches“
 - Regular testing by in vitro skin permeation throughout shelf-life
 - Use as quality control parameter

- Own experience
 - Not useful as quality control parameter
 - Albeit highly standardized procedures high data scattering
Example permeation chart

Drug permeation from patches through dermatomed human skin

- Preparation 1
- Preparation 2

Cumulated amount [µg/cm²]

Time [h]

24 h: no difference detectable
72 h: difference detectable
BE study generals

- Number of test persons essential
 - Statistical significance
 - Depending on evaluation method and scope of study
 - Determines quality of results
 - Refer to experienced staff

- Randomized two-period, two-sequence cross-over studies
 - Single dose
 - Multiple dose
 - Open label
BE studies transdermal-specific

- Important evaluation criteria
 - AUC
 - \(T_{\text{max}}\)
 - \(C_{\text{max}}\)

- Identical application site for test and reference
 - Chest
 - Arm
 - Back

- Critical parameters during application in the clinic
 - Experience of the study nurse
 - Skin state (use of creams/lotions)
 - Hairy skin (removal by scissors)
Pilot Bioequivalence studies (I)

- Aim: first proof of BE for development/first indication on performance
 - One strength (highest or intermediate)

- Small number of test persons
 - Sufficient to show statistical significance
 - Usually about 10-25
 - Seek guidance of biometrics and medical staff

- Test patches often without application aid
 - Due to small scale origin
 - Challenging for clinical staff
 - Briefing prior start of study
Pilot Bioequivalence studies (II)

- **Application**
 - Chest preferred
 - Fixation possible, if proof of concept
 - Lifting of edges
 - non-conformance to guideline
 - Improvement of adhesive properties prior pivotal BE!

- **Extrapolation of patch size**
 - In case BE is not reached – adjustment of patch size
 - Only possible to certain extent
Limits of extrapolation – example (I)

First pilot study: due to safety concerns, test had half of the patch area of reference

BE not reached - estimation by extrapolation performed:
- Increase of patch size of test by 105% will be successful
Limits of extrapolation – example (II)

Second pilot study: patch area 105% of initial area

BE still not reached - estimation over the large range too imprecise
-> Increase of patch area should have been about 140%
Pivotal Bioequivalence studies (I)

- Designed to show bioequivalence – part of the dossier
 - guidelines fully applicable
 - Standard acceptance limits (80-125%; 90% CI, ANOVA)
 - $\text{AUC}_{(0-t)}$, $\text{AUC}_{(0-\infty)}$, C_{max}, partial AUC (single dose)
 - $\text{AUC}_{(0-\tau)}$, $\text{C}_{\text{max,ss}}$, $\text{C}_{\tau,ss}$ (multiple dose)
Pivotal Bioequivalence studies (II)

- Guideline requirements on test product
 - Final equipment
 - 1/10 production scale or 100,000 units, whichever higher
 - For TDS often 100,000 units

- In the past, combination of sizes has been accepted
 - All sizes gained from 1 intermediate product (laminate)
 - total of 100,000 patches; per size smaller amounts acceptable
Pivotal bioequivalence studies (III)

- Further things to consider
 - Co-medication for healthy subjects (high potency drugs)
 - Additional fixation not possible -> final product approach
 - Testing of highest strength sufficient with dose proportionality
 - Lowest strength may be acceptable when safety concerns exist
 - exceptional cases, justification

- Choice of reference
 - Full dossier available?
 - Abridged/hybrid applications not acceptable as reference
 - Further studies requires
Pivotal bioequivalence studies (IV)

- Further things to consider
 - Comparability of batches
 - Assay of test shall not differ more than 5% from that of reference
 - Test procedure for test product to be used
 - Differences for reference possible!

- CRO location
 - Site visit
 - Pre-training with CTS
 - Study monitoring
Irritation/Sensitization testing

- Monitoring during study possible
- Data on previous experience required
 - Adhesives usually tested
 - ISO 10993 as guidance
- Equivalence or superiority to reference
Draft guideline „quality of transdermal patches“

- EMA/CHMP/QWP/911254/2011
- Addresses critical clinical parameters
 - Bioequivalence
 - Irritation/sensitization
 - In vivo skin adhesion

- New limits
 - Size for generics essentially identical
 - Size +20% acceptable in special cases, all other properties must comply
 - Increased adhesion testing protocol
Adhesion testing – critical issues (I)

- Assessment in 5% increments
 - Requires some matrixed positioning device
 - Transfer of loose sections to stencil
 - Photodocumentation
 - Assessment may be difficult with non-transparent patches
 - Fabrics/non-wovens
 - Adhesive overlays
Adhesion testing – critical issues (II)

- Mode of assessment /documentation
 - Manipulation for assessment – effect on adhesion?
 - Transfer of detachment-pattern to matrixed stencil

- Photography suggested by guideline
 - Resolution of images?
 - Significance with non-transparent patches?
Resume (I)

- Bioequivalence testing with TDS
 - essential part of patch development
 - challenging

- New guidelines increase requirements
 - Establishing common standards
 - Some requirements are difficult to adapt

- In vitro skin permeation (Franz cell experiments) give guidance
 - No in vivo in vitro correlation
Resume (II)

- Pilot bioequivalence studies are useful
 - Limits in extrapolation

- Adhesion must be monitored starting in early stage

- Pivotal bioequivalence studies must be carefully planned
 - Considering bioequivalence guideline
 - Adhesion
 - CRO choice
Thank you!