Induction of tolerance to allogeneic transplants – from preclinical models to clinical translation

Birgit Sawitzki
Institute of Medical Immunology, Charité – Universitätsmedizin Berlin
Initiation of an anti-transplant immune response

- **Donor / Graft Dendritic Cells**: Present allogeneic MHC alleles to CD4+ T cells directly and indirectly.
- **Secondary Lymphoid Organs**: Presentation of MHC alleles to CD4+ T cells.
- **Activation and Recruitment of Other Effector Cells**: CTL, CD8+ T cells, and CD4+ T cells.
- **B Cells**: Help in the immune response.
- **DC Licensing**: Involvement of DC licensing in the immune response.
Current standard immunosuppression

<table>
<thead>
<tr>
<th></th>
<th>Calcineurin inhibitors</th>
<th>mTOR inhibitors</th>
<th>Anti-metabolites (methotrexate, MMF...)</th>
<th>Steroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode of action</td>
<td>inhibition of proximal T cell activation</td>
<td>inhibition of T cell differentiation and proliferation</td>
<td>inhibition of T and B cell proliferation</td>
<td>general inflammation inhibition</td>
</tr>
<tr>
<td>autoimmune diseases</td>
<td>no (rarely)</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>organ transplantation</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>application</td>
<td>permanent</td>
<td>permanent</td>
<td>permanent</td>
<td>acute</td>
</tr>
<tr>
<td>side effects</td>
<td>nephrotoxicity, hypertension, (infections, malignancies)</td>
<td>hyperlipidemia, impaired wound healing</td>
<td>bone marrow suppression, gastritis / diarrhea</td>
<td>Diabetes, hypertension, osteoporosis</td>
</tr>
</tbody>
</table>

- Good short-term results, no improvement of long-term function
- Severe side effects cause high morbidity and mortality

Tolerance induction or monimization of immunosuppression
Definition of transplant tolerance

“Lack of a destructive immune response towards the graft in the absence of immunosuppression but presence of general immune competence”
Strategies to induce transplant tolerance

- **Induction of chimerism**
 - Stem cells + solid organ
 - negative selection (thymus)

- **Costimulatory blockade**
 - e.g. CTLA4-Ig/anti-CD40L

- **Depletion of lymphocytes**
 - e.g. anti-CD52/anti-CD20

- **CD3 or co-receptor targeting**

- **Application of donor material**
 - e.g. apoptotic donor cells

- **CD4 modulation**

- **Spontaneous tolerance**

- **Regulatory cells**
 - CD4^+CD25^{high}CD127^{low} Tregs
 - tolerogenic macrophages
 - tolerogeneic DCs...

- **Stem cells**

- **B cells**

- **T cells**
 - CD4^+CD8^+

- **Donor-reactive**

- **Donor alleles**

- **Thymus**
Induction of a chimerism

1. Irradiation (e.g. TBI = total body irradiation) and / or chemotherapeutic conditioning (e.g. cyclophosphamide) to destroy recipients own hematopoietic cells
2. Donor bone marrow (BM) leads to reconstitution by donor immune cells e.g. DCs
3. Donor-reactive developing recipient T cells are deleted within the thymus by donor DCs leading to acceptance of donor skin grafts

Noga Or-Geva et al. Blood 2013;122:3238
Depletion / costimulatory blockade / CD4-targeting

1. Depletion of lymphocytes
e.g. anti-CD4/anti-CD8

2. Costimulatory blockade
e.g. CTLA4-Ig

3. CD4 targeting

1. long-term graft acceptance but, slight increase in fibrosis, proteinuria and glomerulosclerosis (=signs of chronic rejection) on day 150 post-transplant

2. long-term graft acceptance but, self-limiting acute rejection episode, development of chronic rejection

3. long-term graft acceptance with no fibrosis, proteinuria and glomerulosclerosis even one year post-transplant, induction of highly efficient donor-reactive Tregs

Transfer of regulatory T cells

CD4^{+}CD25^{high}\text{F}oxp3^{+} \text{T cells}

- CD69/CD40L
- IFN-\gamma
- Foxp3^{+} T conv

10\times10^{6}/kg b.w.
CD4^{+}CD25^{+} allo-reactive Tregs

DA (RT.1^{av/})
rat orthotopic kidney transplantation

LEW (RT.1^{i})

Suppression / Infectious tolerance

- Apoptose
- Granzyme
- Perforin
- TGF-\beta
- IL-2
- IL-10
- IL-35
- cAMP
- Adenosine
- Adenosine

APC Modification

- CTLA-4
- CD80
- CD86
- IDO
- CD93

DC

DA (RT.1^{av/})
LEW (RT.1^{i})

- No increase in fibrosis, proteinuria and glomerulosclerosis on day 150 post-transplant

Graph showing percent survival over time after transplantation:

- untreated
- adoptive transfer

21.04.2016
Clinical translation

- **Depletion of lymphocytes**
 - e.g. anti-CD52/anti-CD20
 - **Not successful**

- **CD3 or co-receptor targeting**
 - **Not tested yet**

- **Costimulatory blockade**
 - e.g. CTLA4-Ig/anti-CD40L
 - **Not successful**

- **Application of donor material**
 - e.g. apoptotic donor cells
 - **Not tested yet**

- **Induction of chimerism**
 - Stem cells + solid organ
 - Successful (50%)
 - (thymus)

- **Spontaneous tolerance**
 - Observed „operational tolerance“

- **Regulatory cells**
 - CD4+CD25^high^CD127^low^ Tregs
 - Ongoing e.g. „ONE Study“
 - tolerogenic DCs...
Clinical translation – induction of chimerism

- Immunosuppression withdrawal performed in 8 out of 10 patients
- Successful tolerance induction is associated with reduction in donor-reactive T cell clones
- Some patients now developed chronic (humoral) rejection
- 4 patients still of all Immunosuppression (more than 5 years after transplantation
Clinical translation – induction of chimerism

Leventhal et al. Sci Transl Med 2012

-4 -3 -2 -1 0 1 180 – 360 days

200cGy total body

Fludarabine + Cyclophosphamide

Tacrolimus + MMF

several HLA MM

HSC enriched for tolerance promoting facilitating cells (e.g. p-preDCs)

Long lasting donor chimerism in several patients

IS withdrawal successful in 12 out of 19 patients

Long lasting T cell depletion especially CD4⁺ T cells

Graft loss (2 out of 19) due to infectious complications (viral and bacterial sepsis)
Clinical translation

Depletion of lymphocytes
e.g. anti-CD52/anti-CD20

Not successful

CD3 or co-receptor targeting

Not tested yet

Induction of chimerism
Stem cells + solid organ

Successful (50%) (thymus)

Costimulatory blockade
e.g. CTLA4-Ig/anti-CD40L

Not successful

Application of donor material
e.g. apoptotic donor cells

Not tested yet

Spontaneous tolerance

Observed „operational tolerance“

Regulatory cells
- CD4+CD25_{high}CD127_{low} Tregs
- Ongoing e.g. „ONE Study“
- tolerogenic DCs...
Clinical translation – costimulatory blockade

BENEFIT = Phase III

Belatacept (mutated CTL4-4Ig) versus CsA
+ Basiliximab (anti-CD25 mAb) + Steroids + MMF

Vincenti et al. Am J Transpl 2012

<table>
<thead>
<tr>
<th>Arm 1 = More intense Belatacept n = 219</th>
<th>36 months</th>
<th>AR</th>
<th>PTLD</th>
<th>GFR</th>
<th>DSA</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>24%</td>
<td>3</td>
<td>65.2</td>
<td>6%</td>
<td>92%</td>
</tr>
</tbody>
</table>

| Arm 2 = Less intense Belatacept n = 226 | | 17% | 2 | 65.8 | 5% | 92% |

| Arm 3 = CsA n = 221 | | 10% | 1 | 44.4 | 11% | 89% |

No cessation / weaning of immunosuppression possible!
Higher incidence of AR caused by costimulation-independent memory T cells?
Hurdles for tolerance induction

- underlying diseases (e.g. autoimmune hepatitis, FSGS, type-1-diabetes)
- treatment-resistant pre-formed donor-reactive or „cross“-reactive memory T and B cells

Kidney Tx patients on belatacept (CTLA4-Ig)

Espinosa Am J Transpl 2015

IL17 producing T effector cells are regulated by CTLA4- and PD-L1 engagement

Krummey J Immunol 2014,
Schumann Plos ONE 2015
Clinical translation

Depletion of lymphocytes
e.g. anti-CD52/anti-CD20

Not successful

CD3 or co-receptor targeting

Not tested yet

Stem cells + solid organ

Induction of chimerism

Successful (50%)

Stem cells + solid organ

Costimulatory blockade
e.g. CTLA4-Ig/anti-CD40L

Not successful

Application of donor material
e.g. apoptotic donor cells

Not tested yet

Spontaneous tolerance

Not tested yet

T cells
CD4+
CD8+
donor-reactive

CD4 modulation

B cells
donor-reactive

CD4+CD25^{high}CD127^{low} Tregs

Regulatory cells

Ongoing e.g. „ONE Study“

tolerogenic DCs...

Observed „operational tolerance“
Clinical translation – Transfer of regulatory T cells

A Clinical Trial of Regulatory T Cell-Based Immunotherapy for Tolerance Induction in Living Donor Liver Transplantation

Todo et al. Hepatology 2016
Clinical translation – Transfer of regulatory T cells

<table>
<thead>
<tr>
<th>Case</th>
<th>POD</th>
<th>Drug-free (month)</th>
<th>Liver function (U/ml)</th>
<th>LDLT</th>
<th>DSA(MFI)</th>
<th>SI (Anti-donor/anti-third)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,620</td>
<td>Off (33 mo)</td>
<td>AST/ALT/r-GTP</td>
<td>negative</td>
<td>negative</td>
<td>ND/ND</td>
</tr>
<tr>
<td>2</td>
<td>1,543</td>
<td>Off (31 mo)</td>
<td>26/26/14</td>
<td>negative</td>
<td>C-II.DQ7(10117)</td>
<td>9.2/8.6*</td>
</tr>
<tr>
<td>3</td>
<td>1,515</td>
<td>Off (32 mo)</td>
<td>23/21/79</td>
<td>negative</td>
<td>C-II.DQ7(5655)</td>
<td>2.9/2.9</td>
</tr>
<tr>
<td>4</td>
<td>1,410</td>
<td>Off (29 mo)</td>
<td>23/4/10</td>
<td>negative</td>
<td>C-II.DQ7(7042)</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>1,326</td>
<td>Tac (4 mg, x1/d)</td>
<td>17/12/25</td>
<td>negative</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>6</td>
<td>1,284</td>
<td>MMF (500 mg/d)</td>
<td>27/21/25</td>
<td>C-I.CW6(7099)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>7</td>
<td>1,263</td>
<td>Off (23 mo)</td>
<td>33/39/24</td>
<td>negative</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>8</td>
<td>1,186</td>
<td>Off (18 mo)</td>
<td>18/13/20</td>
<td>negative</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>9</td>
<td>1,123</td>
<td>Tac (4 mg, x1/d)</td>
<td>20/13/18</td>
<td>C-II.DR1(5583)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>1,018</td>
<td>Off (16 mo)</td>
<td>18/13/16</td>
<td>negative</td>
<td>negative</td>
<td>ND</td>
</tr>
</tbody>
</table>

POD: postoperative days. AST: aspartate aminotransferase. ALT: alanine aminotransferase. r-GTP: gamma-glutamyl transpeptidase.

Todo et al. Hepatology 2016

• failure of tolerance induction, patients suffered from autoimmune disease (PBC/PSC)

Fantastic results, BUT heterogeneous not well characterized cell product, no controlled study (reference arm w/o cells ethical?), no dose escalation, no immune monitoring!
Clinical translation – Transfer of regulatory T cells

EU-funded (FP7) project to test safety and partially efficacy of regulatory cell therapy in kidney transplantation

Haematopoietic Regulatory Cells

Kidney Tx Recipients (living donation)
Production of regulatory T cells

1. Polyclonal Treg Expansion
(Berlin, London, Oxford)

2. Enrichment of donor-reactive Tregs
(San Francisco)

Donor “cells” (e.g. B cells) +

- RECIPIENT Sorted Tregs (CD4⁺CD25\text{high}CD127\text{low})
- donor-reactive Tregs

expansion with CD3/CD28 expansion beads)

Expanded donor-reactive Tregs
ONE Study clinical trial design

"Primary Endpoint" (rejection-BPAR)

Reference Group Trial (n>60 total)
enrollment finished, follow-up nearly finished
AR: 15%

Cell Therapy Trial (n=8-16 per center)
>20 patients treated (10x Oxford + London poly Tregs, 1x Regensburg Mregs, 8 Berlin poly Tregs, 2 Boston, 1 San Francisco...)
AR: 5%

cell dose escalation
e.g. nTregs in Oxford:
1x10E6, 3x10E6, 6x10E6, 10x10E6/b.w.
Immune monitoring within the ONE Study

<table>
<thead>
<tr>
<th>IM ASSAY</th>
<th>Safety</th>
<th>Efficacy</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Viral Load</td>
<td>A. CMV, EBV, BKV</td>
<td>C. Gene expression of operational tolerance versus rejection</td>
<td>B. Signs of Immunodeperession or paralysis</td>
</tr>
<tr>
<td>C. Gene Expression</td>
<td>C. Gene expression of operational tolerance versus rejection</td>
<td>D. subsets defining operational tolerance versus rejection</td>
<td>C. Immediate change in leukocyte subsets upon cell transfer</td>
</tr>
<tr>
<td>D. Leucocyte Profiling</td>
<td>E. occurrence of anti-donor HLA antibodies</td>
<td>G. Frequence of e.g. IFNg producing allo-reactive memory T cells</td>
<td>D. Immediate change in gene expression</td>
</tr>
<tr>
<td>E. Anti-donor Abs</td>
<td>F. Frequence of e.g. IFNg producing allo-reactive memory T cells</td>
<td>G. Frequence of antigen-reactive effector and regulatory T cells</td>
<td></td>
</tr>
<tr>
<td>F. T cells (ELISPOT)</td>
<td>H. Stability (TSDR demethylation) of Tregs</td>
<td>H. Stability (TSDR demethylation) of Tregs</td>
<td></td>
</tr>
<tr>
<td>G. T cells (CD154/137)</td>
<td>I. Chemokines as sign of ischemia or rejection</td>
<td>I. Chemokines as sign of ischemia or rejection</td>
<td></td>
</tr>
<tr>
<td>H. Tregs (FOXP3)</td>
<td>J. Donor-specific regulation</td>
<td>J. Donor-specific regulation</td>
<td></td>
</tr>
<tr>
<td>I. Urinary IP-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Immune Regulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. HLA-DR Levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Leucocyte Profiling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Microarray</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trzonkowski et al. Sci Transl Med 2015
Summary / conclusions

- Active transplant tolerance induction is possible (e.g. chimerism, Tregs)
- Other approaches are or should be tested in selected patient cohorts
- Better understanding of immune mechanisms influencing outcome in individual patients is needed
Institute of Medical Immunology
Charité Universitätsmedizin
Katrin Vogt
Stephan Schlickeiser
Mathias Streitz
Stefanie Ahrlich
Julia Schumann
Christine Appelt
Katarina Stanko
H.-D. Volk

Nephrology, Charité
Petra Reinke

University of Rostock
Anja Siepert, Manfred Lehmann

Beckman Coulter
Tewfik Miloud, Michael Kapinsky

University of Regensburg
Ed Geissler, James Hutchinson, Ben James