First Dose and Dose Escalation

First Joint Annual Meeting 2005 AGAH
and Club Phase 1

Bruno Reigner, Medical Science, Clinical Pharmacology
F. Hoffmann-La Roche Ltd., Basel
Introduction

• Scope: Starting Dose (SD) and Dose Escalation Scheme (DES) in Entry-Into-Man (EIM) studies

• “One of the most controversial areas in Clinical Pharmacology is the choice of the initial human dose”

• Safety comes first
Outline of the Presentation

• The different approaches used to calculate the SD

• Results of three surveys

• Dose Escalation Schemes
Four Different Approaches

1. The dose by factor approach
 - FDA method (Draft Guidance, Dec 2002)

2. Similar Drug Approach

3. Pharmacokinetically guided approach

4. The comparative approach
1. FDA Draft Guidance: Five steps

- **Step 1:** Determine NOAELs (mg/kg) in toxicity studies

- **Step 2:** Convert each animal NOAEL to Human Equivalent Dose (HED)

- **Step 3:** Pick HED from most appropriate species

- **Step 4:** Choose safety factor and divide HED (generally 10)

- **Step 5:** Consider lowering dose based on a variety of factors, e.g., the Pharmacologically Active Dose (PAD)
1. FDA Draft Guidance: What is behind this conversion?

- Conversion based on normalization of dose to Body Surface Area (BSA)

- NOAEL or MTD scales well between species when doses are normalized to BSA

- Basis: work of Freireich 1966 (18 drugs) and Schein 1970 (25 drugs) with antineoplastic drugs
1. FDA Draft Guidance: Example of a new retinoid

<table>
<thead>
<tr>
<th>Species</th>
<th>NOAEL (mg/kg/d)</th>
<th>BSA-CF</th>
<th>HED (mg/kg)</th>
<th>MRSD (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>50</td>
<td>x 0.162</td>
<td>8.1</td>
<td>49*</td>
</tr>
<tr>
<td>dog</td>
<td>2</td>
<td>x 0.541</td>
<td>1.08</td>
<td>6.5*</td>
</tr>
</tbody>
</table>

*Safety Factor = 10
1. FDA Draft Guidance: Critical Assessment

Pros:

• simple method, easy to implement, easy to review
• will ensure consistency across projects, companies and reviewers
• useful section about magnitude of safety factors
• useful section defining the terms e.g., NOAEL
1. FDA Draft Guidance: Critical Assessment

Cons:

- uses dose and not systemic exposure
- based on old (1966/1970) and limited observations (18+25 drugs) from only one therapeutic area (oncology)
- no retrospective “validation” despite huge database at FDA
2. The Similar Drug Approach

• When human data are available with similar drug(s)

• Example: New retinoid (NR) and Etretinate (ET)

 NOAEL(ET) in dog = 0.1 mg/kg/day
 NOAEL(NR) in dog = 2 mg/kg/day (20X)

 Safe dose for ET in man = 10 mg

 SD(NR) = 10 x 20 x 1/10 = 20 mg
3. PK Guided Approach

- Uses concentration (instead of dose) for the extrapolation

- A target systemic exposure (e.g., AUC) is defined

- CL in man predicted using allometric scaling or Physiologically Based PK modeling
3. PK Guided Approach (Cont.)

Example: New retinoid (NR)

AUC at NOAEL in dog = 17.3 mg.h/L

Predicted CL in man = 16.0 L/h

SD = AUC x CL\textsubscript{man} = 17.3 x 16.0 = 277 mg

SD x safety factor = 277 x 1/10 = 28 mg
4. The Comparative Approach

- Estimate SD using all possible approaches
- Compare results and interpret differences
4. The Comparative Approach

New Retinoid (NR)

<table>
<thead>
<tr>
<th>Method</th>
<th>HED</th>
<th>Safety F</th>
<th>SD (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FDA Guidance</td>
<td>65</td>
<td>10</td>
<td>6.5</td>
</tr>
<tr>
<td>2. Similar Drug</td>
<td>250</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>3. PK Guided</td>
<td>277</td>
<td>10</td>
<td>28</td>
</tr>
</tbody>
</table>
Drugs With Wide Therapeutic Window

• If SD based on NOAEL is predicted to be pharmacologically active…
• Then, lower the SD so it gives the desired pharmacologic effect…
• Using the same approaches to get the SD but with Pharmacologically Active Dose (PAD) instead of NOAEL
Outline of the Presentation

• The different approaches used to calculate the SD

• Results of three surveys

• Dose Escalation Schemes
Results from three surveys at Roche

1995 Survey
- 15 projects
- EIM between 1982 and 1995

1999 Survey
- 15 projects
- EIM between 1996 and 1999

2004 Survey
- 26 projects
- EIM between 1998 and 2004
Three Surveys: PK guided is first choice

- 1995: Dose by factor (20), Similar Drug (8), PK Guided (53), Comparative (0)
- 1999: Dose by factor (27), Similar Drug (7), PK Guided (53), Comparative (0)
- 2004: Dose by factor (20), Similar Drug (8), PK Guided (81), Comparative (0)
What will be the impact of the FDA guidance?

- Pfizer survey: retrospective analysis of 35 drugs
 Actual SD < MRSD in all cases

- Roche survey: retrospective analysis of 26 drugs
 Actual SD << MRSD (10 fold on average)

⇒ Use the comparative approach

Chan et al., CPT, P8, 2004
Outline of the Presentation

• The different approaches used to calculate the SD

• Results of three surveys

• Dose Escalation Schemes
Dose Escalation Schemes

- Arithmetic escalation: x, 2x, 3x, 4x, 5x...
- Geometric escalation: x, 2x, 4x, 8x, 16x...
- Modified Fibonacci: x, 2x, 3.3x, 5x, 7x, 9x, 12x, 16x...
- Factor 3 for first 2 or 3 steps, then factor 2 for subsequent 2 steps and factor 1.5 at the end

Spilker, 1991
Current trend: PK or PD Guided DES

- On line PK to assess systemic exposure and compare to NOAEL AUC
- On line pharmacodynamic results to make decision about next steps
 - E.g., increase in reticulocyte count

⇒ First rapid DE (x2 or x3) until target (PK, PD or safety) and then, more cautious (e.g., x 1.5)
DES: Points to Consider

- Steepness of dose/concentration-response curve
- Seriousness and reversibility of toxicities
- Monitorability of potential AE in humans
- Nonlinear (>proportional) PK with dose
- Systemic exposure compared to NOAEL AUC
SD and DES is Team Work

• SD and DES ≠ use of magic formula
• Discuss with toxicologist, pre-clinical pharmacologist, pharmacokineticist and investigator
• Experienced Clinical Pharmacologist, able to evaluate pre-clinical results (toxicology, pharmacokinetics, chemistry, formulations…)
• Sufficient knowledge of specialized methodologies (e.g., allometric scaling)
Summary

Starting Dose:

• Four different approaches: Dose by factor, similar drug, PK guided and comparative approaches
• FDA Guidance: Uses dose in mg/m² to extrapolate
• At Roche: most common is PK guided approach

Dose Escalation Scheme:

• Case by case, trend towards PK, or PD guided DES
• Not an algorithm - Team work is needed
• Safety comes first!
High technology,
Well trained professionals,
Nevertheless...
Back-ups
1. Dose by Factor: Goals of FDA Draft Guidance

- SD in healthy volunteers - oncology not included

- Goals of the document:
 1. Establish consistent terminology
 2. Provide consistent conversion factors (BSA-CF)
 3. Delineate a strategy for selection of SD, regardless of the projected clinical use
“…an alternative approach could be proposed that places primary emphasis on animal PK and modeling rather than dose. In a limited number of cases, animal PK data may be useful in determining initial clinical dose2. However, in the majority of new INDs, animal data are not available in sufficient detail to construct a scientifically valid, PK model whose aim is to accurately project an MRSD”.

“Measurements of systemic levels or exposure (i.e., AUC or Cmax) cannot be employed for setting a safe SD in humans and it is critical to rely on dose and observed toxic response data from adequate and well-conducted toxicology studies”.

2Footnote of 19 lines highlighting the limitations of the PK-guided approach
1. FDA Draft Guidance: Summary

- Uses dose in mg/m² to extrapolate
- Based on old and limited data in oncology
- Dose by factor approach (ignores PK)
- Old fashion and conservative approach
- PK approach still possible but acceptance questionable
The Present and Future

• Over the years: Evolution from empirical to more physiologic/mechanistic approaches
• Has started at Roche: Prediction of human PK based on PBPK modelling instead of allometric scaling
• The Future: PBPK + Mechanism-Based Pharmacodynamic Modelling - simulations including stochastic simulations

Gomeni et al., Eur J Pharn Sc, 2001
Methods Used in Cancer Chemotherapy

• 1/3 of TDL (Toxic Dose Low) in large animal species

 Penta et al., Cancer Chemother Pharmacol, 1979

• 1/10 of LD$_{10}$ in mice

 Rozencweig et al., Cancer Clin Trials, 1981

• Pro:
 - usually provide safe SD

• Cons:
 - high number of doses needed to reach MTD
 - large number of cancer patients treated at ineffective doses