Biomarkers in CNS drug development
Biomarkers in CNS drug development

Outline

- Definition of terms
- Public-private initiatives in EU and US
- Key challenges for biomarkers
- Conclusions
Biomarkers in CNS drug development

Definition of terms

Biomarker

- A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. (Biomarkers Definitions Working Group, 2001)

- A quantitative measure that is on the causal path between drug administration and effect. (Danhof, 2005)
Biomarkers in CNS drug development

Definition of terms

Surrogate endpoint

- An endpoint that is intended to relate to a clinically important outcome but does not in itself measure a clinical benefit. Surrogate endpoints may be used as primary endpoints when appropriate (when the surrogate is reasonably likely or well known to predict clinical outcome). (ICH guideline topic E8, 1997)

- A biomarker that is intended to substitute for a clinical endpoint. A surrogate endpoint is expected to predict clinical benefit (or harm or lack of benefit or harm) based on epidemiologic, therapeutic, pathophysiologic, or other scientific evidence. Surrogate endpoints are a subset of biomarkers. (Biomarkers Definitions Working Group, 2001)
Biomarkers in CNS drug development

Outline

- Definition of terms
- Public-private initiatives in EU and US
- Key challenges for biomarkers
- Conclusions
Biomarkers in CNS drug development

- Public-private initiatives in EU and US
 - Innovative Medicines Initiative (EFPIA, 2006)

 - Establish a framework to develop biomarkers
 - Develop models predictive of clinical efficacy
 - Ensure imaging biomarkers are validated
 - Validate omics-based biomarkers
Biomarkers in CNS drug development

- Public-private initiatives in EU and US
 - Biomarker consortium (FNIH, 2006)

• Diabetes and pre-diabetes biomarker
• Utility of adiponectin as a biomarker
• Genomic biomarkers for treatment response
• Development of PET radiopharmaceutical
Biomarkers in CNS drug development

Outline

- Definition of terms
- Initiatives in EU and US
- Key challenges for biomarkers
- Conclusions
Biomarkers in CNS drug development

Key challenges for biomarkers

- Compound is given to the wrong subjects
- Compound is given at the wrong dose or regimen
- The favorable effects of the compound are not detected
- The compound has a significant effect in models, but not in patients

Which subject will respond to the drug?
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Appropriate selection to reduce/control heterogeneity
 - Genetic polymorphisms with respect to ADME and targets
 - Identification of susceptibility factors (response may depend on sex, age, personality trait, etc.)
 - Valid disease models rather than patients with multiple disorders
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Response-modifying polymorphisms of CYP2D6
 - Pupillary response to an opioid analgesic with an active metabolite
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Response-modifying polymorphisms of CYP2D6
 - Pupillary response to an opioid analgesic with an active metabolite
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Response-modifying polymorphisms of the µ-receptor
 - SNP 118A>G reduces pupillary response (Lötsch, 2006)

![Graph showing percent change in pupil size from baseline over time for subjects with SNP 118AA, 118AG, and 118GG.](image)
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Appropriate selection to reduce/control heterogeneity
 - Genetic polymorphisms with respect to targets and ADME
 - Identification of susceptibility factors (response may depend on gender, age, personality trait, etc.)
 - Valid disease models rather than patients with multiple disorders
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Cold pressor test response to an opioid analgesic with an active metabolite (via CYP2D6)
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Cold pressor test response to an opioid analgesic with an active metabolite (via CYP2D6)

Two male non-responder (no change of pain intensity)
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Cold pressor test response to an opioid analgesic with an active metabolite (via CYP2D6)

![Graph showing AUC of pain intensity difference to baseline over time for placebo (males) and females. Two female placebo-responders are highlighted.]
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Inadequate response to the CPT
 - Insensitivity and placebo sensitivity (Grach, 2004)

- Susceptibility factors confounding the CPT
 - Personality trait (Pud, 2004, 2006)
 - Gender differences (Jones, 2003 and Mitchell, 2004)
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Susceptibility factors confounding the CPT
 - Personality trait (Pud, 2004, 2006)

Table 2
Linear regression analysis determine predictors of analgesic response

<table>
<thead>
<tr>
<th>Factor</th>
<th>(\Delta)Threshold</th>
<th>(\Delta)Tolerance</th>
<th>(\Delta)VAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>(p)</td>
<td>Coefficient</td>
</tr>
<tr>
<td>NS</td>
<td>0.09</td>
<td>0.77</td>
<td>-0.29</td>
</tr>
<tr>
<td>HA</td>
<td>0.45</td>
<td>0.04</td>
<td>-0.18</td>
</tr>
<tr>
<td>RD</td>
<td>0.66</td>
<td>0.15</td>
<td>0.92</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.28</td>
<td>0.43</td>
<td>-0.07</td>
</tr>
</tbody>
</table>

This table is based on ANOVA-model linear regressions, with NS, HA, RD and the initial level of each pain measure as predictor variables in separate regressions for each sensory measure. Only HA proved significantly related to \(\Delta\)threshold and \(\Delta\)VAS (bold).
Biomarkers in CNS drug development

Which subject will respond to the drug?

- Susceptibility factors confounding the CPT
 - Gender differences (Jones, 2003 and Mitchell, 2004)
Biomarkers in CNS drug development

- Key challenges for biomarkers
 - Compound is given to the wrong subjects
 - Compound is given at the wrong dose or regimen
 - The favorable effects of the compound are not detected
 - The compound has a significant effect in models, but not in patients

Reaches the drug its site of action?
Biomarkers in CNS drug development

Reaches the drug its site of action?

- Positron Emission Tomography (PET)
 - Imaging studies may indicate if (1) the drug reaches its target, (2) there is a linear relationship between dose and target occupancy, (3) occupancy reflects drug levels in plasma, and (4) how long the drug remains at its target.

- Sampling of cerebrospinal fluid
Key challenges for biomarkers

- Compound is given to the wrong subjects
- Compound is given at the wrong dose or regimen
- The favorable effects of the compound are not detected
- The compound has a significant effect in models, but not in patients

Is the drug working?
Biomarkers in CNS drug development

Is the drug working?

- Drug-receptor interaction
 - Relief of pain

- Parallel pathways
 - Performance (reaction time, attention)
 - Subjective effects (drug liking, mood changes)
 - Hormone response (depression of sexual hormones)
 - Physiological response (constipation, miosis)
Biomarkers in CNS drug development

Key challenges for biomarkers

- Compound is given to the wrong subjects
- Compound is given at the wrong dose or regimen
- The favorable effects of the compound are not detected
- The compound has a significant effect in models, but not in patients

Which models are predictors of clinical efficacy?
Biomarkers in CNS drug development

Which models are predictors of clinical efficacy?

- Comparison of various pain models in healthy volunteers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>+</td>
<td>NT</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Heat</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>NT</td>
<td>-</td>
</tr>
<tr>
<td>Electrical</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pressure</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Biomarkers in CNS drug development

Which models are predictors of clinical efficacy?

- Multimodal approach
 - Arendt-Nielsen, 2007

Using experimental methods (1, 2, 3, 4), the evoked pain activates different mechanisms (A, B and/or C) and the effect of a given intervention on the given mechanisms (e.g., on A) can be assessed quantitatively. It is also possible to investigate which mechanism is affected in a patient with pain by systematic activation of different pathways and mechanisms. Using clinical methods only, it is not possible to know which mechanism (A, B and/or C) is involved, and hence which mechanism to modulate using a given drug.
Biomarkers in CNS drug development

Outline

- Definition of terms
- Initiatives in EU and US
- Key challenges for biomarkers
- Conclusions
Conclusions

- Recently launched public-private research initiatives will foster the development and validation of relevant biomarkers.
- In CNS drug development, this will help to minimize the risk of drug candidate failure and accelerate confirmation of clinical safety and efficacy.
- Biomarkers in clinical trials require a well-controlled environment to obtain comparable and reliable results.
Biomarkers in CNS drug development

Thank you for your attention!

“Of course, my view on biomarkers may not exactly the same as yours.”